DG100X07T2 IGBT Discrete

DOSEMI

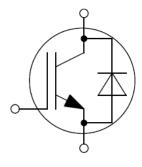
IGBT

DG100X07T2

650V/100A IGBT with Diode

General Description

DOSEMI IGBT Power Discrete provides ultra low conduction loss as well as low switching loss. They are designed for the applications such as general inverters and UPS.


Features

- Low V_{CE(sat)} Trench IGBT technology
- Low switching loss
- Maximum junction temperature 175°C
- V_{CE(sat)} with positive temperature coefficient
- Fast & soft reverse recovery anti-parallel FWD
- Lead free package

Typical Applications

- Inverter for motor drive
- AC and DC servo drive amplifier
- Uninterruptible power supply

Equivalent Circuit Schematic

DG100X07T2 IGBT Discrete

Absolute Maximum Ratings T_C =25°C unless otherwise noted

IGBT

Symbol	Description	Value	Unit	
V_{CES}	Collector-Emitter Voltage	650	V	
V_{GES}	Gate-Emitter Voltage	±20	V	
	Collector Current @ T _C =25°C	200	٨	
$I_{\rm C}$	@ T _C =130°C	100	A	
I_{CM}	Pulsed Collector Current t _p limited by T _{imax}	400	A	
P_{D}	Maximum Power Dissipation @ T _i =175°C	1071	W	

Diode

Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	650	V
	Diode Continuous Forward Current @ T _C =25°C	200	Λ
1_{F}	@ T _C =120°C 100		A
I_{FM}	Diode Maximum Forward Current t _p limited by T _{imax}	400	A

Discrete

Symbol	Description	Values	Unit
T_{jop}	Operating Junction Temperature	-40 to +175	°C
T_{STG}	Storage Temperature Range	-55 to +150	°C
T_{S}	Soldering Temperature, 1.6mm from case for 10s	260	°C

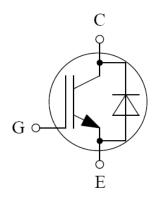
IGBT Discrete DG100X07T2

IGBT Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
		I_{C} =100A, V_{GE} =15V, T_{i} =25°C		1.45	1.90	
$V_{\text{CE(sat)}}$	Collector to Emitter Saturation Voltage	I _C =100A, V _{GE} =15V, T _j =125°C		1.60		V
		$I_{C}=100A, V_{GE}=15V, T_{j}=150^{\circ}C$		1.70		
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I_{C} =1.60mA, V_{CE} = V_{GE} , T_{i} =25°C	5.1	5.8	6.5	V
I_{CES}	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V,$ $T_{\text{j}}=25^{\circ}\text{C}$			1.0	mA
I_{GES}	Gate-Emitter Leakage Current	$V_{GE}=V_{GES}, V_{CE}=0V,$ $T_{j}=25^{\circ}C$			400	nA
R_{Gint}	Internal Gate Resistance			2.0		Ω
Cies	Input Capacitance	11 0511C 11 01		11.6		nF
C _{res}	Reverse Transfer Capacitance	V_{CE} =25V,f=1MHz, V_{GE} =0V		0.23		nF
Q_{G}	Gate Charge	V _{GE} =-15+15V		0.69		μC
t _{d(on)}	Turn-On Delay Time	OL .		40		ns
$t_{\rm r}$	Rise Time			20		ns
$t_{d(off)}$	Turn-Off Delay Time			192		ns
$t_{\rm f}$	Fall Time	$V_{CC}=300V,I_{C}=100A,$		40		ns
E _{on}	Turn-On Switching Loss	$R_G=3.3\Omega, V_{GE}=\pm 15V, T_j=25^{\circ}C$		0.44		mJ
$E_{ m off}$	Turn-Off Switching Loss			2.00		mJ
t _{d(on)}	Turn-On Delay Time			48		ns
t_r	Rise Time			24		ns
$t_{d(off)}$	Turn-Off Delay Time	1		208		ns
$t_{\rm f}$	Fall Time	$V_{CC}=300V,I_{C}=100A,$		52		ns
E _{on}	Turn-On Switching Loss	R_{G} =3.3 Ω , V_{GE} =±15 V , T_{j} =125 $^{\circ}$ C		0.68		mJ
$E_{\rm off}$	Turn-Off Switching Loss			2.68		mJ
t _{d(on)}	Turn-On Delay Time			52		ns
t_r	Rise Time			24		ns
$t_{d(off)}$	Turn-Off Delay Time	V 200VI 100 A		216		ns
$t_{\rm f}$	Fall Time	$V_{CC}=300V,I_{C}=100A,$		60		ns
E _{on}	Turn-On Switching Loss	R_{G} =3.3 Ω , V_{GE} =±15 V , T_{j} =150° C		0.78		mJ
$E_{ m off}$	Turn-Off Switching Loss			2.80		mJ
I_{SC}	SC Data	$\begin{array}{c} t_{P}\!\!\leq\!\!6\mu s, \! V_{GE}\!\!=\!\!15V, \\ T_{j}\!\!=\!\!150^{o}\!$		500		A

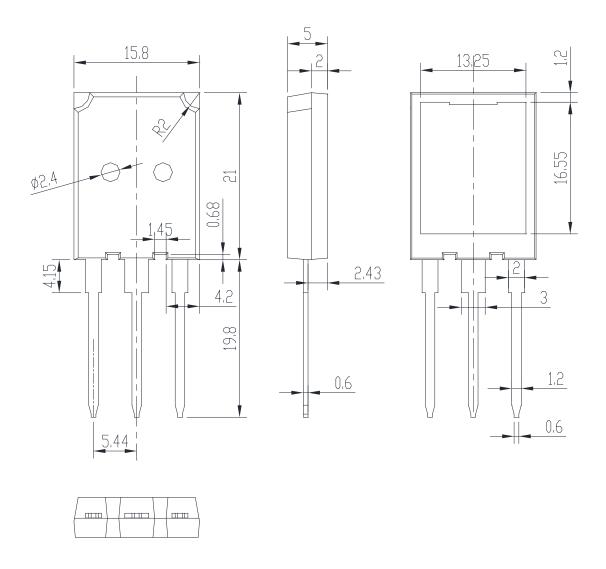
DG100X07T2 **IGBT** Discrete

Diode Characteristics $T_C=25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{F}	Diode Forward	$I_F = 100A, V_{GE} = 0V, T_i = 25^{\circ}C$		1.55	2.00	
	Voltage	$I_F=100A, V_{GE}=0V, T_j=125^{\circ}C$		1.50		V
	voltage	$I_F = 100A, V_{GE} = 0V, T_i = 150^{\circ}C$		1.45		
\cap	Recovered			4.6		uС
Q_r	Charge	$V_R=300V,I_F=100A,$		4.0		μC
I_{RM}	Peak Reverse	V_R =300 V_{IF} =100A, -di/dt=3520A/ μ s, V_{GE} =-15V		99		A
1RM	Recovery Current	$T_i=25^{\circ}C$		99		A
E_{rec}	Reverse Recovery	1 _j -23 C		1.32		mJ
rec	Energy			1.32		1113
Q_{r}	Recovered	V_R =300V, I_F =100A, -di/dt=3520A/ μ s, V_{GE} =-15V T_j =125°C		8.6		μC
Q r	Charge			0.0		μ
I_{RM}	Peak Reverse			121		A
-RM	Recovery Current			121		11
E_{rec}	Reverse Recovery			2.37		mJ
rec	Energy			2.37		1113
Q_{r}	Recovered			9.9		μC
Q r	Charge	V_R =300V, I_F =100A, -di/dt=3520A/ μ s, V_{GE} =-15V T_i =150°C		7.7		μ0
I_{RM}	Peak Reverse			127		A
	Recovery Current			12/		11
E _{rec}	Reverse Recovery	1,-150 €		2.64		mJ
	Energy			2.07		1113

Discrete Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min.	Typ.	Max.	Unit	
R_{thJC}	Junction-to-Case (per IGBT)			0.140	I K / \\ \	
	Junction-to-Case (per Diode)			0.262		
R_{thJA}	Junction-to-Ambient		40		K/W	


DG100X07T2 IGBT Discrete

Circuit Schematic

Package Dimensions

Dimensions in Millimeters

DG100X07T2 IGBT Discrete

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.